Contest: Measuring Tech Emergence

Alan Porter, 1,2 Jan Youtie, 2 Stephen Carley, 1 Nils Newman 1 and Dewey Murdick 3

- [1] R&D, Search Technology, Inc., 6025 The Corners Pkwy, Norcross GA, USA 30092; aporter@searchtech.com;
- [2] Program in Science, Technology & Innovation Policy, Georgia Tech, Atlanta GA, USA 30313;
- [3] Chan Zuckerberg Initiative, Palo Alto, CA, USA 94301.

GOALS

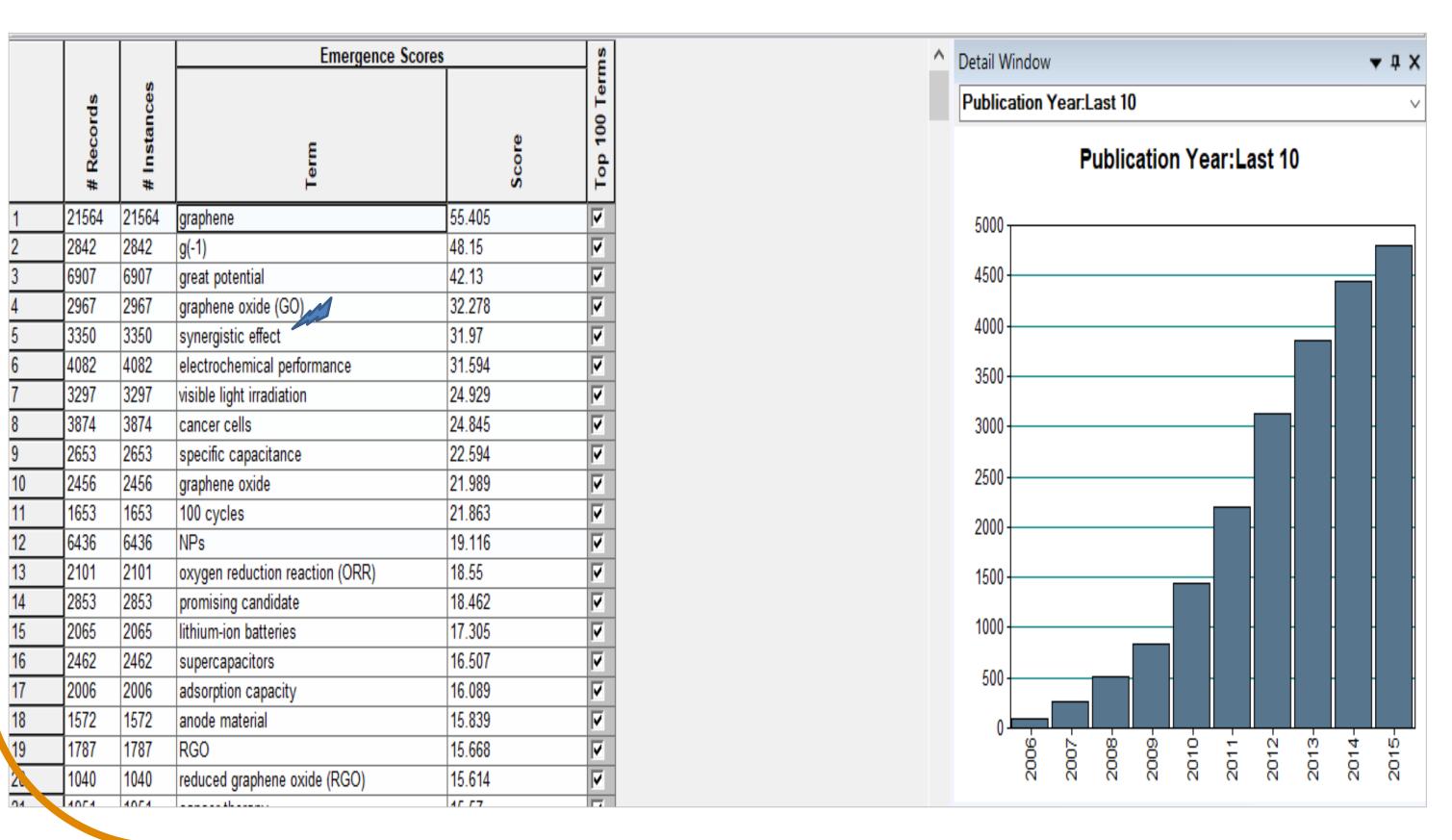
TO DEVELOP NEW **EMERGENCE INDICATORS** TO SUPPORT RESEARCHERS, RESEARCH MANAGERS, BUSINESSES, AND OTHERS IN IDENTIFYING **EMERGING TOPICS WITHIN A SCIENCE AND TECHNOLOGY DOMAIN**.

APPROACH

- ☐ WE TAKE A MICRO APPROACH (SEE CARLEY ET AL., 2018; PORTER ET AL., 2018)
- ☐ [CONTRAST TO A COMPLEMENTARY MACRO APPROACH (SEE SMALL, BOYACK & KLAVANS, 2014)]

OUR R&D EMERGENCE INDICATORS

CRITERIA


- ☐ TERM **NOVELTY**
- ☐ TERM **PERSISTENCE**
- ☐ RESEARCH COMMUNITY FORMATION
- ☐ TERM **GROWTH**

EMERGENCE INDICATOR ILLUSTRATIONS FOR "NANOTECHNOLOGY" – SEE FIGURES 1 & 2; & FOR 2 NANO TOPICS – DOX RELEASE AND GQDs IN FIGURE 3

THE CONTEST: A CHALLENGE

- OUR APPROACH SERVES AS A BASE MODEL FOR COMPARISON.
- OUR CHALLENGE INCENTIVIZES THE **DEVELOPMENT OF NEW AND BETTER APPROACHES** TO DEVISE INDICATORS OF EMERGING R&D TOPICS.
- ☐ GROUND RULES (BEING FINALIZED):
 - (FREE) ACCESS TO HIGH QUALITY DATASETS ON WHICH TO TRAIN & EXPERIMENT ABSTRACT RECORDS ON 3 TOPICS FROM A GLOBAL R&D DATABASE (WEB OF SCIENCE) (~JAN. 1, 2019)
 - Competitors receive the test dataset & submit their results for assessment within ~10 days (~April)
 - Winner to be awarded for the 2019 Global TechMining Conference (Oct. 11, Atlanta, GA USA) (complimentary registration and travel support up to \$1500)
- STUDENT AND/OR ACADEMIC RESEARCH GROUPS ESPECIALLY ENCOURAGED TO PARTICIPATE. PARTICIPATION IS OPEN TO ALL.
- To receive Contest Updates send your e-mail address to: STEPHEN.CARLEY@SEARCHTECH.COM

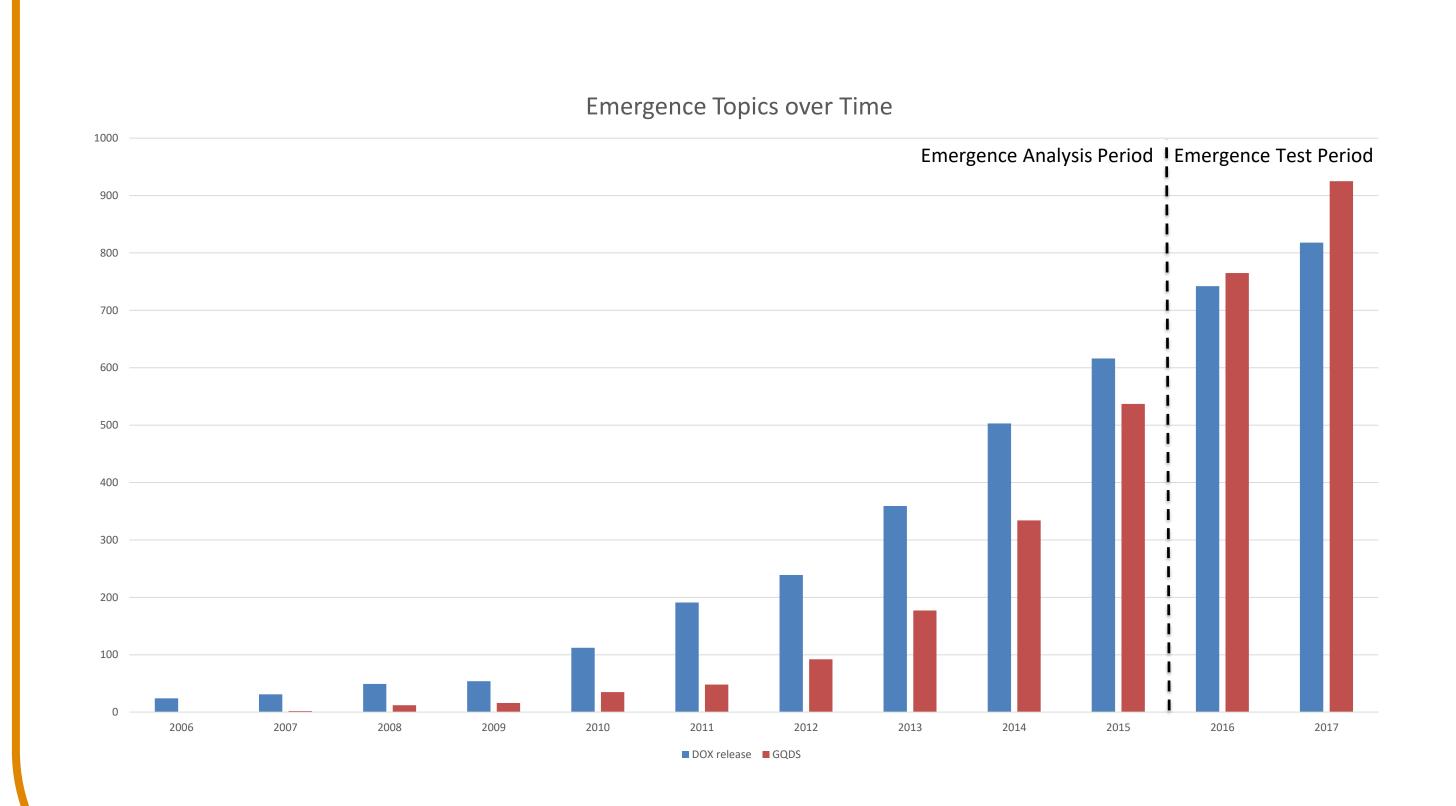

Fig 1. Initial stage – distinguish terms that evidence accelerating recent R&D attention. Dataset: Nanotechnology (Web of Science, 2006-2015).

Fig 2. Indicators of Technology Emergence in Nanotechnology

1991-2000	1998-2007			2006-2015	
High Emergence Terms	Emergence Scores	Emergence Scores	Emergence Scores	High Emergence Terms	Emergence Scores
atomic force microscopy	23.68	nanoparticles	63.10	Graphene	55.41
(AFM)	20.53	nanowires	20.04	g(-1)	48.15
nanoparticles	19.81	gold nanoparticles	19.97	great potential	42.13
carbon nanotubes	17.85	field emission	18.92	graphene oxide (GO)	32.28
x-ray diffraction (XRD)	15.48	CNTs	17.89	synergistic effect	31.97
mechanical properties	13.10	carbon nanotubes (CNTs)	17.85	electrochemical performance	31.59
particle size	12.37	detection limit	17.52	visible light irradiation	24.93
nanotubes	11.90	nanocomposites	16.66	cancer cells	24.85

Fig 3. Emergence Topics over Time

Check the Contest Website for further information:

http://www.vpinstitute.org/wordpress/acade mic-portal/tech-emergence-contest/

REFERENCES

STEPHEN CARLEY, NILS NEWMAN, ALAN PORTER, & JON GARNER (2018). AN INDICATOR OF TECHNICAL EMERGENCE, *Scientometrics*. 115 (1), 35-49; http://link.springer.com/article/10.1007/s11192-018-2654-5.

ALAN PORTER, JON GARNER, NILS NEWMAN, STEPHEN CARLEY, JAN YOUTIE, SEOKBEOM KWON & YIN LI (2018) NATIONAL NANOTECHNOLOGY RESEARCH PROMINENCE, Technology Analysis & Strategic Management, DOI: 10.1080/09537325.2018.1480013.

HENRY SMALL, KEVIN BOYACK, & RICHARD KLAVANS (2014). IDENTIFYING EMERGING TOPICS IN SCIENCE AND TECHNOLOGY, RESEARCH POLICY, 43 (8), 1450–1467.

ACKNOWLEDGEMENTS

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY US NATIONAL SCIENCE FOUNDATION AWARD #1759960, "INDICATORS OF TECHNOLOGICAL EMERGENCE." ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS MATERIAL ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE FOUNDATION.